Science or Not Summary

Students are introduced to methods of scientific investigation by designing hypothetical experiments to test hypotheses about the world around us. Examples from the instructor’s research or current events can be used to make the exercise more relevant to students. Scenarios for controlled and correlation studies will be used so that students experience multiple methods of experimental design. What counts as scientific evidence? Students could apply scientific reasoning to the evidence for global climate change, medical treatments (vaccines) and claims of products such as detoxifying footbaths, high-dose vitamins, and balance bracelets (or amber teething necklaces).

Scientific Inquiry Learning Outcomes

At the end of this module, students will be able to:

  1. Distinguish among ideas that can and cannot be tested by science; evaluate statements and determine which are scientific or and which are not scientific.
  2. Create and defend a scientific argument by identifying and evaluating valid sources of scientific evidence.
  3. Distinguish among the scientific terms: theory, hypothesis, and prediction.
  4. Construct hypotheses to explain biological phenomena:
    1. Propose hypotheses that are appropriate to the given scenario or question.
    2. Evaluate several hypotheses to select the one which best explains observations, or is best supported by data.
    3. Predict what would be most likely to occur under given experimental conditions in a test of a specific hypothesis, and justify predictions using biological concepts.
  5. Design experiments to test biological hypotheses:
    1. Identify the dependent and independent variables, and control and experimental treatments in any experiment.
    2. Identify situations in which no “control treatment” is appropriate, and design an experiment where subjects are tested more than once or the experimental treatment levels take a wide range of values.
    3. Justify the steps and procedures for an experiment.
  6. Create graphs from a data set.
    1. Decide what type of graph is the most appropriate type to display a data set.
    2. Decide to which axis each variable should be assigned in order to represent a specific hypothesis properly.
  7. Use experimental results to support or refute a hypothesis:
    1. Interpret graphs and/or raw data with respect to a hypothesis
    2. Distinguish correlation from causation, and correctly attribute phenomena to biological mechanisms.
    3. Demonstrate how to distinguish observations/data resulting from a specific cause from those caused by random chance.
    4. Explain why experimental evidence may lead to multiple interpretations, and propose ways to address this limitation (e.g., many samples should be taken, many related experiments should be performed).
  8. Interpret and communicate scientific ideas effectively
    1. Use the conventions of scientific writing, including images and graphs, e.g. in laboratory reports.
    2. Interpret and paraphrase information from valid sources, such as the textbook and the primary literature.
  9. Explain why hypotheses and even theories may be subject to revision.

Lecture Resources

Laboratory Resources

Science or Not Lecture Notes and Sample Class Activities

Lecture overview

This module introduces students to scientific inquiry and data-driven thinking. Working in small groups, students evaluate various claims about things that are “scientifically proven”. They create a hypothesis and design an experiment to test these claims. Students also 1) evaluate instances in which observational experiments are necessary, 2) construct a graph from a data set, and 3) draw conclusions from the data set.

Inquiry Learning Outcomes

At the end of this module, students will be able to:

  1. Distinguish among ideas that can and cannot be tested by science; evaluate statements and determine which are scientific or and which are not scientific.
  2. Create and defend a scientific argument by identifying and evaluating valid sources of scientific evidence.
  3. Distinguish among the scientific terms: theory, hypothesis, and prediction.
  4. Construct hypotheses to explain biological phenomena:
    1. Propose hypotheses that are appropriate to the given scenario or question.
    2. Evaluate several hypotheses to select the one which best explains observations, or is best supported by data.
    3. Predict what would be most likely to occur under given experimental conditions in a test of a specific hypothesis, and justify predictions using biological concepts.
  5. Design experiments to test biological hypotheses:
    1. Identify the dependent and independent variables, and control and experimental treatments in any experiment.
    2. Identify situations in which no “control treatment” is appropriate, and design an experiment where subjects are tested more than once or the experimental treatment levels take a wide range of values.
    3. Justify the steps and procedures for an experiment.
  6. Create graphs from a data set.
    1. Decide what type of graph is the most appropriate type to display a data set.
    2. Decide to which axis each variable should be assigned in order to represent a specific hypothesis properly.
  7. Use experimental results to support or refute a hypothesis:
    1. Interpret graphs and/or raw data with respect to a hypothesis
    2. Distinguish correlation from causation, and correctly attribute phenomena to biological mechanisms.
    3. Demonstrate how to distinguish observations/data resulting from a specific cause from those caused by random chance.
    4. Explain why experimental evidence may lead to multiple interpretations, and propose ways to address this limitation (e.g., many samples should be taken, many related experiments should be performed).
  8. Interpret and communicate scientific ideas effectively
    1. Use the conventions of scientific writing, including images and graphs, e.g. in laboratory reports.
    2. Interpret and paraphrase information from valid sources, such as the textbook and the primary literature.
  9. Explain why hypotheses and even theories may be subject to revision.

Sample Class Activities

  1. Students examine a claim that is “scientifically proven”. Some examples are provided (see below), but students can also search for other claims. These claims can be used to generate class discussion about science v/s not science, where scientific information can be found, and the importance of evidence. (Inquiry 1, Inquiry 2, Inquiry 3)
  2. Students propose a hypothesis and design an experiment to test their “claim”.  Discussion of good hypotheses and experimental design can be generated by comparing hypotheses and experimental design amongst different students/groups. (Inquiry 4, Inquiry 5)
  3. Students consider an experiment on the effects of class attendance to performance in a class. This activity allows students the opportunity to compare controlled experiments to observational experiments. (Inquiry 5)
  4. Students construct a graph from hypothetical class attendance v/s class performance data.  Discussion of appropriate graph type and format can be generated by comparing graphs amongst different students/groups. (Inquiry 6)
  5. Students generate a figure caption for the graph and draw conclusions. This is a good opportunity for discussion about correlation v/s causation, multiple interpretations of data, and revision of conclusions. (Inquiry 7, Inquiry 8, Inquiry 9)
  6. Some clicker questions are provided, which can be interspersed throughout the module or given at the end as a quiz:

Access the slides here

Attendance Chart

Data from an upperdivision biology class conducted in the Spring 2008 semester. Attendance was taken via a signup sheet at each meeting (TTh).
Number of attendance daysMidterm Grade
1586.1
1350.8
1669.5
1489.5
1251.9
1473.3
1371.4
1064.3
1286.8
1483.5
1690.2
1484.6
649.6
1580.1
1590.6
1676.7
1058.6
1585.3
1565
1692.1
954.9
1684.2
1587.6
1387.2
1581.6
1676.7
622.9
1172.9
1684.2
962.4
1387.6
1569.9
1685
1487.6
869.2
1686.5
1281.6
1596.2
549.2
1173.3
1691.4
1686.8
1165.4

Download data here

Science or Not Lab: Experimental Design

Why are larger individuals of a particular species eaten more frequently than smaller ones?

Overview

The primary purpose of this investigation is to introduce students to 1) the collaborative process and guided inquiry format that will be used in each investigation, 2) the lab preparation and reporting assignments, and 3) resources available for help (lab manual and faculty instructor/peer mentors). As an introduction to the lab, this investigation thus differs from the others in that the hypothesis to be tested is provided to students: “Larger Catocala moths are eaten more often than smaller ones because the larger ones are easier to see.” As in each investigation, background information is presented to help frame the direction of inquiry. Foraging theory and prey crypsis are used to motivate the provided hypothesis.

Outcomes: Inquiry 5, Inquiry 6, Inquiry 7, Inquiry 8

Materials

Lab-Aids Natural Selection Experiment (Kit #91). Provide one per group of students.

Shaw, T.J. & French, D.P. (2018). Authentic Research in Introductory Biology, 2018 ed. Fountainhead, Fort Worth.

Timeline

We suggest two weeks for this investigation if it’s the first lab investigation of the term.

Week 1:  Begin planning form

  1. May submit by end of lab period, or in LRC
  2. Will complete as a group, not individually (all other planning forms are individually completed)

Week 2:  Conduct experiment and compose lab report

Assessments

Quiz

Keys and additional instructor-only notes (you will be asked to sign into a Google account and request access to view instructor materials)

Lab report rubric

(I think this is a key for the Drive) Investigation A: Instructor-only notes

  1. Briefly describe the Lab
    1. Students will be working in groups
    2. They will learn by doing
    3. Each week is a new investigation.  For each investigation there will be background information and a question posed.  They will design and conduct an experiment that addresses the question.
    4. Prior to lab, students will read the investigation and prepare for lab by completing that week’s planning form and pre-lab activities.
    5. Encourage equal participation.  Lack of participation from a student can significantly reduce their grade!
  2. Introduce the Lab Manual
    1. Each student needs to have his or her own manual.  They need to bring it to lab every week. Point out the three different sections:
      1. Guide to Success: Includes general information about the course, how to conduct a lab, write a report, etc.
      2. Reference: Includes instructions on how to use equipment and software for lab experiments.
      3. Investigations: background information, terms, pre-labs, planning forms, etc. for each lab.
  3. Planning Forms
    1. Instead of telling students about planning forms, it is most beneficial to discuss them as students do them.
      1. Have students turn to the first investigation.  Point out the question under investigation, background information, pre-labs, terms/concepts of interest, special equipment sections.
      2. Go through the first page of the planning form.  Allow students to work in groups to formulate responses, then discuss what would be appropriate.  This weeks’ hypothesis is provided (“Larger moths are eaten more often than smaller ones because they are easier to see.”) but you will want to encourage discussion about developing a hypothesis now because students will do it on their own in the future.
      3. Discuss experimental design with a control and experimental groups.  Ensure that the students have a good understanding of independent and dependent variables so that they may construct graphs properly.
      4. Students are expected to complete the Preparation Checklist (on the backside of the planning form), but only A-C are required. Students can keep D blank.  
      5. Emphasize that planning forms are expected to be completed individually, but this week, they’ll be completed as a group.  This would be a good time to contrast collaboration and plagiarism.
  4. Investigation
    1. Aside from the basics of designing and conducting an experiment, and writing a lab report, you will want to encourage students in the following areas:
      1. Developing a testable repeatable experiment.  Remember that the moth is in its “natural” habitat.  Removing the pieces from the box to make them easier to see may not provide information that will help the scientist in the background who is working in the field with “live” colonies and predators.  Students don’t often realize that to make something harder to see, they can just close their eyes!
      2. Appropriate controls.  How large is large? How small is small?  Can you assume that all Catocala colonies contain the same number and sizes of individuals?  Is experimenter bias something to be concerned about? What about hand size of the predators?  Will the moth be replaced after each sample, or at the end of a trial? Do students think the predator selects prey one at a time, or by the handful? These are all things for students to think about, but having to consider all of these questions at once can overwhelm students and make them feel like the investigation is impossible.  

Additional resources

Quiz

Key

Sea to Shore Summary

What does it mean to be alive? How did the first cells form, and what traits did these earliest cells possess? How do living things function in varied environments? In this scenario, students are asked to consider what constitutes life, its origins, and the evidence needed to demonstrate that something is alive. Students are introduced to the molecules common to all living things, and the structure and function of cells. Students make observations of animal body shape, and apply knowledge of gradients and chemical activity to develop a working hypothesis about the ratio of surface area-to-volume, and its impact on homeostasis, metabolism and ultimately, survival. Instructors could use examples from extreme environments or journeys to other planets as contexts for this investigation and guide student inquiry.

Life Learning Outcomes
  1. List and explain the characteristics of life.
  2. Use these characteristics of life to distinguish between living and nonliving things.
  3. Define homeostasis, and describe its importance to maintaining life.
  4. Compare and contrast the biological/medical, legal, and ethical definitions of life and death, and discuss the importance of defining life and death.

 

Chemistry Learning Outcomes
  1. Explain why water is essential to life and how the characteristics of polarity and hydrogen bonding are important for this role.
  2. Identify the four macromolecules, and define their roles/functions in a cell.
  3. Explain the difference between ionic, covalent, and hydrogen bonds, and identify the relative strength of each type of bond.
  4. Predict which type of bond would be formed between two (or more) atoms.
  5. Describe the relationship between monomers and polymers, and give examples for each type of biological macromolecule listed below:
    1. Proteins
    2. Nucleic acids (RNA, DNA)
    3. Carbohydrates
  6. Explain what an enzyme is and how it influences the rate of biological reactions.
  7. Define active site and its role in enzyme function.
  8. Describe and predict how environmental conditions (e.g., temperature and pH) can influence protein structure and the shape of the active site of an enzyme.

 

Cell Learning Outcomes
  1. Identify the function of cell components, especially:
    1. Nucleus
    2. Mitochondria
    3. Chloroplasts
    4. Ribosomes
    5. Rough and Smooth Endoplasmic Reticulum
    6. Vesicles
    7. Golgi
    8. Cell Membrane
    9. Cytoplasm
    10. Cell Wall
    11. Vacuoles
  2. Identify which cell components are found in:
    1. all cells
    2. prokaryotes (Eubacteria, Archaea)
    3. eukaryotes
      1. Animals
      2. Plants
      3. Protists
      4. Fungi
  3. Predict the organismal group to which an unknown cell might belong from a description of its components.
  4. Predict the possible functions of an unknown cell depending on its components.
  5. Predict the abundance of particular organelles depending on a cell’s functions.

 

Ratio of surface area-to-volume (SA/V) Learning Outcomes
  1. Calculate the ratio of surface area-to-volume of an object, and explain why the ratio decreases as objects get larger and increases as objects get smaller.
  2. Explain how the ratio of surface area-to-volume plays a role in regulating:
    1. Rates of diffusion and osmosis
    2. Gas exchange
    3. Body temperature
  3. Given environmental conditions, predict the SA/V ratio that would be selected by natural selection, and explain how this could be a mechanism of evolution.

 

Gradients Learning Outcomes
  1. Explain what a gradient is and the role of gradients in:
    1. Homeostasis
    2. Thermoregulation
    3. Osmoregulation
    4. Chemical reactions associated with metabolism
  2. Identify whether a chemical or energy gradient exists in new situations
  3. Indicate the direction of energy or material movement under different conditions such as:
    1. Chemical concentrations
    2. Temperature
    3. Permeability of membranes
  4. Indicate the relative rate of energy or material movement under different conditions including:
    1. chemical concentrations
    2. temperature
    3. permeability of membranes
    4. varied shape (surface-to-volume ratio)

 

Membrane Transport Learning Outcomes
  1. Identify the components of cell membranes, and explain how the arrangement of components makes the membrane semi-permeable.
  2. Explain how processes of transport work including:
    1. Diffusion
      1. Passive
      2. Facilitated
    2. Osmosis
      1. Passive
      2. Facilitated
    3. Active transport
  3. Define the following terms, and explain how they relate to the movement of materials across a membrane:
    1. Isotonic
    2. Hypotonic
    3. Hypertonic
  4. Explain how larger objects/molecules cross membranes by exocytosis, endocytosis, and phagocytosis, and predict when each of these transport mechanisms is used.
  5. Predict how the following conditions affect membrane transport:
    1. gradient conditions
    2. temperature
    3. ATP availability
    4. changes in permeability
    5. molecule size, charge, or polarity

 

Thermoregulation Learning Outcomes
  1. Apply the terms endotherm, ectotherm, poikilotherm/heterotherm, and homeotherm to organisms
  2. Identify organisms as endotherms, ectotherms, poikilotherms/heterotherms, and homeotherms based on
    1. physical characteristics
    2. behavior
    3. metabolic changes
    4. membership in taxonomic groups (birds, mammals, etc.)
    5. changes in body temperature measurements
  3. Predict the effect of varying environmental temperatures on an organism’s behavioral or metabolic responses including:
    1. enzyme activity
    2. locomotion
    3. body temperature
  4. Interpret data/graphs as they relate to the effect of varying environmental temperatures on an organism’s behavioral or metabolic responses including:
    1. enzyme activity
    2. locomotion
    3. body temperature
  5. Design or critique simple experiments to test the effect of varying environmental temperatures on an organism’s behavioral or metabolic responses including:
    1. enzyme activity
    2. locomotion
    3. body temperature
  6. Explain how various temperature regulation methods serve to heat or cool an organism including:
    1. avoidance
    2. altering metabolic rate
    3. behaviorally adjusting posture, ratio of surface area-to-volume, and location
    4. explain how ratio of surface area-to-volume is involved in heat retention or loss
  7. Explain why organisms thermoregulate.
  8. Explain mechanisms of heat generation at the cellular level

 

Osmoregulation Learning Outcomes
  1. Explain why organisms osmoregulate.
  2. For different habitats (ocean, freshwater, on land, etc.), predict whether ions or water need to be conserved.
  3. Describe how organisms osmoregulate in different habitats, on the:
    1. cellular level, using active and passive transport across membranes
    2. individual organism level, in terms of inputs and outputs
  4. Compare and contrast how organisms osmoregulate in different habitats.

Lecture Materials

Lab Materials

Sea to Shore Lecture Notes and Sample Class Activities

Students are introduced to the characteristics of life, including organization, biochemistry, and homeostasis.

There are several possible options for how to present the topics.

  1. Start with the question “Are we alone in the universe, and how will we identify life if we find it?” To begin to figure this out, we should understand the properties of life, and how it arose on earth (Topics: Life, Chemistry, Cell). The importance of water as the solvent in which life originated motivates an exploration of the range of precipitation and temperature conditions of different environments (biomes). This leads to an investigation of how life works, especially how structure relates to function across a range of conditions (Topics:  SA/V, Gradients, Membrane Transport, Thermoregulation, Osmoregulation).

 

  1. Start with the question “Is there life on Mars?” Use the question “Why is water so important in the search for signs of life on Mars?” to motivate an exploration of “Why is liquid water so important for life?” (Topics:  Life, Chemistry). A study of the Miller-Urey experiment can be used to introduce or review the elements of experimental design. From macromolecules, transition to cell structure (which are made of macromolecules; Topic: Cell). Tie back to life on Mars – “If humans visit Mars, what would we need to survive?” (Topics:  SA/V, Gradients, Membrane Transport, Thermoregulation, Osmoregulation).
  2. Start with images of terrestrial (cold vs. hot) and aquatic (fresh vs. salt? tropical vs. polar?) animals from contrasting environments. What traits do they have, and why? Differences between the pairs motivate study of homeostasis (Topics:  SA/V, Gradients, Membrane Transport, Thermoregulation, Osmoregulation). The characteristics in common lead to an exploration of the traits that are necessary for life (Topics: Life, Cell, Chemistry).

Sample Class Activities

Sea to Shore Lab: Thermoregulation

Why are animals shaped differently in cooler climates than in warmer ones?

Overview

The purpose of this lab is to get students relating surface area/volume ratio to the way in which an animal thermoregulates (by using modeling clay).  At the conclusion of this investigation, students should also be writing a better lab report, able to produce a XY scatter plot with a trendline, and perform a simple statistical test. They will be using modeling clay to simulate body shapes, and temp probes to monitor any changes.  They may craft any shape they like, provided that 1. They can calculate the SA/V ratio of the shape, and 2. They can accurately record its temp with the probe (shapes like a long cylinder or flattened box do not work well as there is little clay surrounding the temp probe).

Outcomes:  Inquiry 4, Inquiry 5, Inquiry 6, Inquiry 7, Inquiry 8; SA/V 1; Gradients 1, Gradients 2, Gradients 3, Gradients 4; Thermoregulation 1, Thermoregulation 6

Materials (Per lab group)

Shaw, T.J. & French, D.P. (2018). Authentic Research in Introductory Biology, 2018 ed. Fountainhead, Fort Worth.

Assessments

PreLab

Quiz

Keys and additional instructor-only notes (you will be asked to sign into a Google account and request access to view instructor materials)

Lab report rubric

Sea to Shore Lab: Diffusion

Why is diffusion through a membrane sometimes faster?

Overview

This lab should help students understand the extremely important role of gradients. Focus on the idea that gradients occur whenever there is a concentration difference from high to low. Gradients do not just occur in liquids there can be gradients in temperature, Na and K ions, smoke, perfume, people, etc.

Students should be familiar with the terms solute, solvent, hyper-and hypotonic. Osmosis refers to the movement of water and dialysis typically to the movement of solute. Students may or may not comprehend the concept of ion, but you can simply leave it as a charged atom or particle or molecule. Unfortunately, if they don’t have some clue about ions or at least that NaCl becomes Na+ and Cl- when dissolved, the understanding what conductivity tells them is difficult. The pre-lab explains it, but be prepared.

Outcomes:  Inquiry 4, Inquiry 5, Inquiry 6, Inquiry 7, Inquiry 8; SA/V 1, SA/V 2; Gradients 1, Gradients 2, Gradients 3, Gradients 4; Membrane Transport 2, Membrane Transport 3, Membrane Transport 5

Materials

Per lab group

Shaw, T.J. & French, D.P. (2018). Authentic Research in Introductory Biology, 2018 ed. Fountainhead, Fort Worth.

Assessments

PreLab Activity

Quiz

Keys and additional instructor-only notes (you will be asked to sign into a Google account and request access to view instructor materials)

Lab report rubric