Sea to Shore Lab: Thermoregulation

Why are animals shaped differently in cooler climates than in warmer ones?

Overview

The purpose of this lab is to get students relating surface area/volume ratio to the way in which an animal thermoregulates (by using modeling clay).  At the conclusion of this investigation, students should also be writing a better lab report, able to produce a XY scatter plot with a trendline, and perform a simple statistical test. They will be using modeling clay to simulate body shapes, and temp probes to monitor any changes.  They may craft any shape they like, provided that 1. They can calculate the SA/V ratio of the shape, and 2. They can accurately record its temp with the probe (shapes like a long cylinder or flattened box do not work well as there is little clay surrounding the temp probe).

Outcomes:  Inquiry 4, Inquiry 5, Inquiry 6, Inquiry 7, Inquiry 8; SA/V 1; Gradients 1, Gradients 2, Gradients 3, Gradients 4; Thermoregulation 1, Thermoregulation 6

Materials (Per lab group)

Shaw, T.J. & French, D.P. (2018). Authentic Research in Introductory Biology, 2018 ed. Fountainhead, Fort Worth.

Assessments

PreLab

Quiz

Keys and additional instructor-only notes (you will be asked to sign into a Google account and request access to view instructor materials)

Lab report rubric

Sea to Shore Lab: Diffusion

Why is diffusion through a membrane sometimes faster?

Overview

This lab should help students understand the extremely important role of gradients. Focus on the idea that gradients occur whenever there is a concentration difference from high to low. Gradients do not just occur in liquids there can be gradients in temperature, Na and K ions, smoke, perfume, people, etc.

Students should be familiar with the terms solute, solvent, hyper-and hypotonic. Osmosis refers to the movement of water and dialysis typically to the movement of solute. Students may or may not comprehend the concept of ion, but you can simply leave it as a charged atom or particle or molecule. Unfortunately, if they don’t have some clue about ions or at least that NaCl becomes Na+ and Cl- when dissolved, the understanding what conductivity tells them is difficult. The pre-lab explains it, but be prepared.

Outcomes:  Inquiry 4, Inquiry 5, Inquiry 6, Inquiry 7, Inquiry 8; SA/V 1, SA/V 2; Gradients 1, Gradients 2, Gradients 3, Gradients 4; Membrane Transport 2, Membrane Transport 3, Membrane Transport 5

Materials

Per lab group

Shaw, T.J. & French, D.P. (2018). Authentic Research in Introductory Biology, 2018 ed. Fountainhead, Fort Worth.

Assessments

PreLab Activity

Quiz

Keys and additional instructor-only notes (you will be asked to sign into a Google account and request access to view instructor materials)

Lab report rubric

Thermoregulation and ratio of surface area-to-volume

Outcomes: Gradients 1, Gradients 2, Gradients 3, Gradients 4; Thermoregulation 1, Thermoregulation 2, Thermoregulation 3, Thermoregulation 4, Thermoregulation 5, Thermoregulation 6, Thermoregulation 7, Thermoregulation 8

  1. The purpose of this activity is to illustrate the important role of SA/V in maintaining gradients. Students compare how life has evolved in extreme biomes namely by comparing images of the ear size of desert and tundra dwelling animals and connecting this structure with an animal’s ability to maintain homeostasis (i.e. temperature gradients and thermoregulation).  

Engage students by showing a photo of a desert biome and a tundra biome (see below). It is important that some plants be visible in each photo (not photos of sand dunes or snowpack) to illustrate that life can exist here. Ask students to make observations and compare and contrast each biome with their neighbors/teams. Ask students “What do you think might be an obstacle to life in these biomes?” and they usually respond with “temperature extremes and lack of liquid water.” Tell students, “Let’s look at the living things that have evolved to live in these extreme biomes.”

Prepare presentation slides with images of similar tundra and desert animals side by side for comparison by students (see below). Select images that prominently display the ears and legs of each animal so that students can eventually recognize the role of the ratio of surface area-to-volume in thermoregulation. Ask students to compare and contrast the body shapes of the following animals: Arctic Hare v. Jackrabbit, Lemming v. Kangaroo rat, Arctic fox v. Kit fox. It may help to show these images repeatedly as students discuss how the body shapes differ. Students will initially describe the animals as “chunky,” “skinny,” “fluffy,” etc. You may want to point out to students that it is difficult to measure how “fluffy” an animal is, so they should try describe the animals using surface area and volume.

Students soon realize that these two measurements are linked; as volume increases so does surface area. Although some students will start referring to these measurements as a ratio, many students will need prompting to make this connection.

 

  1. Ask students to work in groups to research and find organisms to complete this table:
Poikilotherm Homeotherm
Endotherm
Ectotherm

(Thermoregulation 1, Thermoregulation 2)

  1. After students work with the concepts of gradients and membrane transport, you may want to engage them this following case study:
    • Gradients and Thermoregulation: Left out in the cold! – While backpacking in the Canadian Rockies, Joel loses his way and finds that his experience hiking and camping in his home state of Florida hasn’t prepared him for springtime weather conditions in the mountains. This case study allows students to review and integrate physiological responses to cold exposure. (Gradients 1, Gradients 2, Gradients 3, Gradients 4